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Abstract. High-energy virtual photon–virtual photon scattering can be viewed as an interaction of small
size color dipoles from the beam and target photons, which makes γ∗γ∗, γ∗γ scattering at high energies
(LEP, LEP200 and NLC) an indispensable probe of the short distance properties of the QCD pomeron
exchange. Based on the color dipole representation, we investigate the consequences for the γ∗γ∗, γ∗γ
scattering of the incorporation of asymptotic freedom into the BFKL equation which makes the QCD
pomeron a series of isolated poles in the angular momentum plane. The emerging color dipole BFKL–
Regge factorization allows us to relate in a model-independent way the contributions of each BFKL pole
to γ∗γ∗, γ∗γ scattering and DIS off protons. Numerical predictions based on our early works on the color
dipole BFKL phenomenology of DIS on protons are in good agreement with the experimental data on the
photon structure function F2γ and the most recent data on the γ∗γ∗ cross section σγ∗γ∗

(Y ) from the OPAL
and L3 experiments at LEP200. We discuss the role of non-perturbative dynamics and predict a pronounced
effect of the Regge-factorization breaking due to large unfactorizable non-perturbative corrections to the
perturbative vacuum exchange. We comment on the salient features of the BFKL–Regge expansion for
γ∗γ∗, γ∗γ scattering including the issue of the decoupling of subleading BFKL poles and the soft plus
rightmost hard BFKL pole dominance.

1 Introduction

In this note we study scattering of virtual and real pho-
tons,

γ∗(q) + γ∗(p) → X, (1)

in the high-energy regime of the large Regge parame-
ter 1/x which depends on the virtualities of the photons
through

1
x

=
W 2 +Q2 + P 2

Q2 + P 2 + µ2 � 1, (2)

and which has the correct parton model limit if either
Q2 � P 2 or P 2 � Q2. In (2) W 2 = (q+ p)2 is the center-
of-mass energy squared of the colliding space-like photons
γ∗(q) and γ∗(p) with virtualities q2 = −Q2 and p2 = −P 2,
respectively.

The recent strong theoretical [1–7] and experimental
[1,8–12] (see also the compilation in [13]) interest in high-
energy γ∗γ∗, γ∗γ, γγ scattering stems from the fact that
the virtualities of the photons give a handle on the size
of the color dipoles in the beam and target photons and,
eventually, on the short distance properties of the QCD
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pomeron exchange. For the earlier development of the sub-
ject see the pioneering paper of [14].

As noticed by Fadin, Kuraev and Lipatov in 1975 [15]
and discussed in more detail by Lipatov in [16] the incor-
poration of asymptotic freedom into the BFKL equation
[17] makes the QCD pomeron a series of isolated poles in
the angular momentum plane. The contribution of each
isolated pole to the high-energy scattering amplitude sat-
isfies the familiar Regge factorization [18]. In [19] we re-
formulated the consequences of the Regge factorization in
our color dipole (CD) approach to the BFKL pomeron.
In this communication we address several closely related
issues in photon–photon scattering in the Regge regime
(2) which can be tested at LEP200 and the Next Linear
Collider (NLC).

First, following our early work [19–21] we discuss how
the color dipole (CD) BFKL–Regge factorization leads to
parameter-free predictions for the total cross sections of
γ∗γ∗, γ∗γ, γγ scattering. We find good agreement with
the recent experimental data from the L3 and OPAL ex-
periments at LEP [8–12].

Second, we discuss the interplay of soft and hard dy-
namics of the vacuum exchange and comment on the onset
of the soft plus rightmost hard BFKL pole dominance in
diffractive γ∗γ∗ scattering. The nodal properties of the
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eigenfunctions of the CD BFKL equation suggest the in-
teresting possibility of decoupling of subleading BFKL sin-
gularities when the virtuality of one or both of the photons
is in the broad vicinity of Q2 ∼ 20GeV2. Hence, the lead-
ing hard plus soft approximation (LHSA) advocated by
us previously in [21] appears to be very efficient.

Third, we discuss the impact of running CD BFKL
on the contentious issue of testing the factorization prop-
erties of photon–photon scattering in the Q2, P 2 plane
which has earlier been discussed only in the approxima-
tion of αS = const to the BFKL equation [2–4] (for the
color dipole picture in the αS = const approximation see
[22]). Our finding is that the non-perturbative corrections
break down the Regge factorization. The experimental ob-
servation of this phenomenon would contribute to a better
understanding of the non-perturbative dynamics of high-
energy processes.

2 Overview
of color dipole BFKL–Regge factorization

In the color dipole basis the beam–target scattering is
viewed as a transition of γ∗ into a quark–antiquark pair
and an interaction of the beam (A) and target (B) color
dipoles of the flavor A,B = u, d, s, c. As a fundamental
quantity we use the forward dipole scattering amplitude
and/or the dipole–dipole cross section σ(x, r, r′). Once
σ(x, r, r′) is known, the total cross section of AB scatter-
ing, σAB(x), is calculated and found to be

σbt(x) =
∫

dzd2rdz′d2r′|ΨA(z, r)|2|ΨB(z′, r′)|2

×σ(x, r, r′), (3)

where r and r′ are the two-dimensional vectors in the
impact parameter plane. In the color dipole factorization
formula (3) the dipole–dipole cross section σ(x, r, r′) is
beam–target symmetric and universal for all beams and
targets, the beam and target dependence is concentrated
in the probabilities |ΨA(z, r)|2 and |ΨB(z′, r′)|2 to find
a color dipole, and r and r′ are in the beam and target,
respectively. Hereafter we focus on cross sections averaged
over polarizations of the beam and target photons; in this
case only the term n = 0 of the Fourier series

σ(x, r, r′) =
∞∑

n=0

σn(x, r, r′) exp(inϕ), (4)

where ϕ is the azimuthal angle between r and r′, con-
tributes in (3).

Fadin, Kuraev and Lipatov noticed in 1975 [15], see
also Lipatov’s extensive discussion [16], that the incor-
poration of asymptotic freedom into the BFKL equation
makes the QCD pomeron a series of isolated poles in the
angular momentum plane. The contribution of each pole
to the scattering amplitudes satisfies the standard Regge
factorization [18], which in the CD basis implies the CD

BFKL–Regge expansion for the vacuum exchange dipole–
dipole cross section

σ(x, r, r′) =
∑
m

Cmσm(r)σm(r′)
(x0

x

)∆m

. (5)

Here the dipole cross section σm(r) is an eigenfunction of
the CD BFKL equation [19,20,23–25]

∂σm(x, r)
∂ log(1/x)

= K ⊗ σm(x, r) = ∆mσm(x, r), (6)

with eigenvalue (intercept) ∆m. Arguably, for a transition
of γ∗ into heavy flavors, A = c, b, ..., the hardness scale is
set by Q2 + 4m2

A, and for light flavors Q2 +m2
ρ is a sen-

sible choice which leads to the correct value of the Regge
parameter in the photoproduction regime, Q2 → 0.

Hence, for the light–light transition we evaluate the
Regge parameter (2) with µ2 = m2

ρ, and for the light–
charm contribution we take µ2 = 4m2

c and for the charm–
charm contribution we take µ2 = 8m2

c .
For the details of the CD formulation of the BFKL

equation, infrared regularization by a finite propagation
radius Rc for perturbative gluons and freezing of the
strong coupling at large distances, the choice of the phys-
ically motivated boundary condition for the hard BFKL
evolution and for a description of the eigenfunctions we
refer to our early works [19,20,25]; the successful appli-
cation of the CD BFKL–Regge expansion to the proton
and pion structure functions (SF) and an evaluation of the
hard pomeron contribution to the rise of hadronic and real
photo-absorption cross sections are found in [19–21,25].
We only recapitulate the salient features of the formalism
essential for the present discussion.

There is a useful analogy between the intercept ∆ =
α(0)−1 and the binding energy for the bound state prob-
lem for the Schrödinger equation. The eigenfunction σ0(r)
for the rightmost hard BFKL pole (ground state) corre-
sponding to the largest intercept ∆0 ≡ ∆IP is node free.
The eigenfunctions σm(r) for excited states with m ra-
dial nodes have an intercept ∆m < ∆IP . Our choice of
Rc = 0.27 fm yields for the rightmost hard BFKL pole
the intercept ∆IP = 0.4, for subleading hard poles ∆m ≈
∆0/(m+ 1). The node of σ1(r) is located at r = r1 �
0.05–0.06 fm, for larger m the rightmost nodes move to a
somewhat larger r and accumulate at r ∼ 0.1 fm; for a
more detailed description of the nodal structure of σm(r)
see [19,20]. Here we only emphasize that for solutions
with m ≥ 3 the third and higher nodes are located at
a very small r, way beyond the resolution scale 1/

√
Q2

of foreseeable deep inelastic scattering (DIS) experiments.
Notice that the Regge cut in the complex angular mo-
mentum plane found in the much discussed approxima-
tion αS = const resembles an infinite, and continuous,
sequence of poles. In the counterpart of our CD BFKL–
Regge expansion (5) for the approximation αS = const the
intercept∆m would be a continuous parameter in contrast
to the discrete spectrum for the standard running αS.

Because the BFKL equation sums cross sections of
the production of multigluon final states, the perturba-
tive two-gluon Born approximation is an arguably natural
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boundary condition. This leaves the starting point x0 as
the only free parameter which completely fixes the result
of the hard BFKL evolution for the dipole–dipole cross
section. We follow the choice x0 = 0.03 made in [25]. The
very ambitious program of the description of F2p(x,Q2)
starting from this, perhaps excessively restrictive, pertur-
bative two-gluon boundary condition has been launched
by us in [19] and met with remarkable phenomenological
success [20,21].

Because in the attainable region of r the subleading
solutions m ≥ 3 cannot be resolved and they all have
similar intercepts ∆m � 1. In the practical evaluation of
σAB we can truncate the expansion (5) at m = 3 lumping
in the term with m = 3 contributions of all singularities
with m ≥ 3. Specifically, if we put

σ3(r) = σBorn(r) −
2∑

m=0

σm(r) (7)

with the effective intercept ∆3 = 0.06 the truncated ex-
pansion reproduces the numerical solution σ(x, r) of our
CD BFKL equation in the wide range of dipole sizes
10−3 � r � 10 fm with accuracy � 10% even at a moder-
ately small x. Such a truncation can be justified a poste-
riori if such a contribution from m ≥ 3 turns out to be a
small correction, which will indeed be the case at small x.

Whereas scattering of small dipoles r � Rc is domi-
nated by the exchange of perturbative gluons, the interac-
tion of large dipoles with the proton target has been mod-
eled in [25,20,21] by the non-perturbative soft pomeron
with intercept αsoft(0) − 1 = ∆soft = 0. Then the extra
term σsoft(r, r′) must be added in the r.h.s. of the expan-
sion (5).

From the early phenomenology of DIS and diffractive
vector meson production off a proton target we only know
the parameterization of σsoft(r, r′) when one of the dipoles
is definitely large, of the order of the proton size. Evalua-
tion of the soft contribution to γ∗γ∗ scattering when both
dipoles are small inevitably introduces a model depen-
dence. Modelling of the soft contribution by the exchange
by two non-perturbative gluons suggests [26]

σsoft(r, r′) ∝ r2r′2

(r2 + r′2)

and the non-factorizable cross section of the form

σγ∗γ∗
soft (Q2, P 2) ∝ 1

Q2 + P 2 .

A similar non-perturbative σsoft is found in the soft
pomeron models [27]. The explicit parameterization is
found in the appendix.

Finally, at moderately small values of x the above de-
scribed t-channel gluon tower exchange must be comple-
mented by the t-channel qq̄ exchange often associated with
DIS off vector mesons (hadronic component) and off the
perturbative (point-like) qq̄ component of the target pho-
ton wave function. We add corresponding corrections only
to the real photon structure function F2γ(x,Q2) to esti-
mate the interplay of vacuum and non-vacuum exchanges

in the currently accessible kinematical region of not very
small x. In all other cases of interest we concentrate on the
pure vacuum exchange at x � x0 where the non-vacuum
corrections are negligible small.

In our evaluation of the box diagram contribution to
F pl

2γ(x,Q
2), which is [29]

F pl
2γ(x,Q

2) =
3αem

π

×
∑

q=udsc

e4qx

{[
x2 + (1 − x)2] log

Q2(1 − x)
xQ2

q

+8x(1 − x) − 1

}
, (8)

we take the ρ meson mass as the lower cut-off for the
light-flavor-loop integral, Q2

q = m2
ρ for q = u, d, s, and the

charm quark mass for the c-loop, Q2
c = m2

c . In (8) eq is
the quark charge.

To describe the hadronic component of F2γ we take the
coherent mixture of ρ0 and ω mesons [30]. On being sup-
plemented with quite standard assumptions on the vector
meson valence quark density this gives

F had
2γ (x) =

αem

12
[
4(gρ + gω)2 + (gρ − gω)2)

]√
x(1 − x),

(9)
where the coupling constants are g2V = 4π/f2

V , and in the
Fock state expansion

|γ〉had =
e

fρ
|ρ〉 +

e

fω
|ω〉 + ...

they are as follows: g2ρ = 0.5 and g2ω = 0.043 [13]. We
neglect the Q2 evolution which, at reasonable values of
the lower scale, is a small correction on the interval 1.9 ≤
Q2 ≤ 5GeV2, where the small-x data on F2γ were taken.

Then, combining (5) and (3) and adding the soft and
non-vacuum components, we obtain our principal result
for virtual–virtual scattering (m = 0, 1, 2, 3, A,B = u, d,
s, c):

σγ∗γ∗
vac (x,Q2, P 2) =

(4π2αem)2

Q2P 2

×
∑
m

Cm

∑
A,B

fA
m(Q2)fB

m(P 2)
(

3x0

2xAB

)∆m

+σγ∗γ∗
soft (x,Q2, P 2). (10)

To make explicit the scale dependence discussed in the
Introduction we provide µ and x defined by (2) with two
indices, A and B, indicating the flavor of both the beam
and target dipoles: µ2

AB = m2
ρ for A,B = u, d, s while

µ2
AB = 4m2

c if either A = c or B = c and the second dipole
is made of light quarks and µ2

AB = 8m2
c if A = B = c.

For the DIS off real (quasireal) photons, P 2 � 0, we
have (A = u, d, s, c)

F2γ(x,Q2) =
∑
m

Aγ
m

∑
A

fA
m(Q2)

(
3
2
x0

xA

)∆m

+F soft
2γ (x,Q2) + F nvac

2γ (x,Q2), (11)
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where

xA =
Q2 + µ2

A

W 2 +Q2

and µ2
A = m2

ρ for A = u, d, s while µ2
A = 4m2

c for A =
c. The cc̄ component of the target photon wave function
is strongly suppressed at P 2 � 0 and for all practical
purposes can be neglected as well as the cc̄ content of the
target proton. This observation simplifies the factorization
relation (11) for the real photon structure function. In (11)
the non-vacuum component denoted by F nvac

2γ is

F nvac
2γ (x,Q2) = F had

2γ (x,Q2) + F pl
2γ(x,Q

2), (12)

and the cross sections

σγ∗
m (Q2) = 〈γ∗

T|σm(r)|γ∗
T〉 + 〈γ∗

L|σm(r)|γ∗
L〉 (13)

are calculated with the well-known color dipole distribu-
tions in the transverse (T) and longitudinal (L) photon of
virtuality Q2 derived in [28], and the eigen SFs are defined
as usual:

fm(Q2) =
Q2

4π2αem
σγ∗

m (Q2). (14)

The factor 3/2 in the Regge parameter derives from the
point that in scattering of a color dipole on the photon the
effective dipole–dipole collision energy is 3/2 of that in the
reference scattering of the color dipole on the three-quark
nucleon at the same total c.m.s. energy W . The analyt-
ical formulas for the eigen-SFs fm(Q2) and fc

m(Q2) are
found in the appendix. Here as well as in all our previous
calculations we put mc = 1.5GeV. We do not need any
new parameters compared to those used in the descrip-
tion of DIS and real photo-absorption on protons [19–21]
(for an alternative approach see [31,32]); the results for
the expansion parameters Aγ

m = Cmσ
γ
m, Cm = 1/σp

m and
σγ

m ≡ σγ∗
m (0) are summarized in Table 1.

We recall that because of the diffusion in color dipole
space, exchange by perturbative gluons contributes also
to the interaction of large dipoles r > Rc [24]. However at
moderately large Regge parameter this hard interaction
driven effect is still small. For this reason in what follows
we refer to terms m = 0, 1, 2, 3 as the hard contribution
as opposed to the genuine soft interaction.

3 Isolating the soft plus rightmost hard BFKL
pole in highly virtual–virtual γ∗γ∗ scattering

We start with the theoretically cleanest case of the highly
virtual photons, P 2, Q2 � 1GeV2 and focus on the vac-
uum exchange component of the total cross section. The
CD BFKL approach with asymptotic freedom predicts
uniquely that subleading eigen-SFs have a node at Q2 ∼
20GeV2 in which region of Q2 the rightmost hard pole
contribution will dominate. This suppression of the sub-
leading hard background is shown in Fig. 1, in which we
plot the ratio (m = 0, 1, 2, 3, soft)
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Fig. 1. The normalized ratio of soft-to-rightmost hard and
subleading hard-to-rightmost hard expansion coefficients (m =
1, 2, 3, soft) rm(Q2) = σγ∗γ∗

m /σγ∗γ∗
vac of the BFKL–Regge expan-

sion for γ∗γ∗ scattering at x = x0

Table 1. CD BFKL–Regge expansion parameters

m ∆m σp
m,mb Cm,mb−1 Aγ

m/αem σγ
m, µb σγγ

m , nb

0 0.402 1.243 0.804 0.746 6.767 36.84
1 0.220 0.462 2.166 0.559 1.885 7.69
2 0.148 0.374 2.674 0.484 1.320 4.65
3 0.06 3.028 0.330 0.428 9.456 29.53
soft 0. 31.19 0.0321 0.351 79.81 204.2

rm(Q2) =
σγ∗γ∗

m

(
3
2
x0, Q

2, Q2
)

σγ∗γ∗
vac

(
3
2
x0, Q

2, Q2
) ,

which defines the relative size of the different contributions
to σγ∗γ∗

vac at x = (3/2)x0. At this value of x the contribu-
tion of the subleading hard BFKL poles remains marginal
in a broad range of Q2, although the contribution from
the single-node component m = 1 becomes substantial at
Q2 � 103 GeV2.

The soft pomeron exchange contributes substantially
over all Q2 and dominates at Q2 � 1GeV2. However, at
the very large W ∼ 100GeV of practical interest at LEP
and LHC, such small values ofQ2 correspond to very small
x; the soft and subleading hard contributions are Regge
suppressed by the factor (x/x0)

∆IP and (x/x0)
0.5∆IP , re-

spectively. The latter is clearly seen from Fig. 2 where the
effective pomeron intercept

∆eff = −∂ log σγ∗γ∗
vac

∂ log x
(15)

is presented for the diagonal case Q2 = P 2 for three dif-
ferent values of W .

According to the results shown in Fig. 1 the dominance
of the soft plus rightmost hard BFKL pomeron exchange
in virtual–virtual γ∗γ∗ scattering holds in the very broad
range of Q2, P 2 � 500GeV2 which nearly exhausts the
interesting kinematical region at LEP200 and NLC. The
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Fig. 2. Predictions from CD BFKL–Regge expansion for the
effective intercept ∆eff , (15), for the diagonal case Q2 = P 2

and W = 50, 100, 200GeV
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Fig. 3. Predictions from CD BFKL–Regge expansion for the
vacuum exchange component of the virtual–virtual γ∗γ∗ cross
section for the diagonal case of Q2 = P 2 and for c.m.s. col-
lision energy W = 50, 100, 200GeV (solid curves). The lead-
ing hard BFKL exchnage plus soft pomeron exchange approx-
imation (LHSA) is shown by the long-dashed curve. The soft
pomeron component of the cross section is shown separately
by the dashed curve

quality of the leading hard pole plus soft approximation
(LHSA) can be judged also from Fig. 3 for the diagonal
case of Q2 = P 2, in which we show separately the soft
component of the cross section (the dashed curve). The
point that the contribution from subleading hard BFKL
exchange is marginal is clear from the finding that the
approximation of soft pomeron plus the rightmost hard
BFKL exchange (LHSA) shown by the long-dashed curve
nearly exhausts the result from the complete CD BFKL–
Regge expansion for vacuum exchange.

Recently the L3 Collaboration [10] reported the first
experimental evaluation of the vacuum exchange in equal
virtuality γ∗γ∗ scattering. Their procedure of subtrac-
tion of the non-vacuum reggeon and/or the quark par-
ton model contribution is described in [10]. Arguably the
subtraction uncertainties are marginal within the present
error bars. In Fig. 4 we compare our predictions to the L3
data. The experimental data and theoretical curves are

1

10

100

σγ∗
γ∗

(Y
),

 n
b

2 3 4 5 6 7
Y

1

10

σγ∗
γ∗

(Y
),

 n
b

S
1/2

=91 GeV

S
1/2

=183 GeV

<Q
2
>=14 GeV

2

<Q
2
>=3.5 GeV

2

Fig. 4. Predictions from CD BFKL–Regge expansion for the
vacuum exchange component of the virtual–virtual γ∗γ∗ cross
section for the diagonal case of 〈Q2〉 = 〈P 2〉 are confronted
with the experimental data by the L3 Collaboration [10]. The
experimental data and theoretical curves are shown versus the
variable Y = log(W 2/(Q2P 2)1/2). The solid curve shows the
result from the complete BFKL–Regge expansion, the soft
pomeron (the dashed curve) component included. The long-
dashed curve shows the rightmost hard BFKL (LH) plus soft
pomeron (S) approximation (LHSA)

shown versus the variable Y = log(W 2/(Q2P 2)1/2). The
virtuality of two photons varies in the range of 1.2GeV2 <
Q2, P 2 < 9GeV2 (〈Q2, P 2〉 = 3.5GeV2) at s1/2 � 91GeV
and 2.5GeV2 < Q2, P 2 < 35GeV2 at s1/2 � 183GeV
(〈Q2, P 2〉 = 14GeV2). We applied to the theoretical cross
sections the same averaging procedure as described in [10].
The solid curve is a result of the complete BFKL–Regge
expansion for the vacuum exchange, the long-dashed curve
is a sum of the rightmost hard BFKL exchange and soft
pomeron exchange. Shown by the dashed line is the soft
pomeron contribution. The agreement of our estimates
with the experiment is good; the contribution of sublead-
ing hard BFKL exchange is negligible within the experi-
mental error bars.

In Fig. 5 we compare our predictions for the vacuum
exchange contribution to σγ∗γ∗

(Y ) with recent OPAL Col-
laboration measurements [12]. In the applicability region
of our approach corresponding to Y � Y0 = log(2/3x0) �
3 the agreement with the data is good. The discrepancy
at smaller Y may indicate significant non-vacuum contri-
butions vanishing at large Y .

The early calculations [4,2,3] of the perturbative vac-
uum component of σγ∗γ∗

used the approximation αS =
const which predicts the P 2, Q2 dependence different from
our result for CD BFKL approach with running αS. A
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Fig. 5. Predictions from CD BFKL–Regge expansion for the
vacuum exchange component of the virtual–virtual γ∗γ∗ cross
section for the diagonal case of 〈Q2〉 = 〈P 2〉 = 17.9GeV2 are
confronted with the experimental data by the OPAL Collabo-
ration [12]. The experimental data and theoretical curves are
shown versus the variable Y = log(W 2/(Q2P 2)1/2). The solid
curve shows the result from the complete BFKL–Regge expan-
sion, the soft pomeron (the dashed curve) component included.
The long-dashed line corresponds to the rightmost hard BFKL
(LH) plus soft pomeron (S) approximation (LHSA)

detailed comparison with numerical results by Brodsky,
Hautmann and Soper (BHS) [4] is reported by the L3 Col-
laboration [10], finding that the BHS formulas predict a
too high σγ∗γ∗

vac substantially. In [3] the same perturba-
tive fixed-αS BFKL model with massive c-quark has been
considered. At 〈Q2〉 = 14GeV2 and moderately small x,
x � 3.10−2, the model is in agreement with the L3 data
but at smaller x, already at x ∼ 7.10−3, it substantially
predicts a too high σγ∗γ∗

vac . At 〈Q2〉 = 3.5GeV2 the results
[3] are substantially above the L3 data over all x.

4 Virtual–real γ∗γ scattering: The rightmost
hard BFKL pole in the photon SF

The discussion of the photon SF follows closely that of
the proton and pion SFs in [19–21]. Our normalization of
eigenfunctions is such that the vacuum (sea) contribution
to the proton SF (m = soft, 0, 1, .., 3)

F2p(x,Q2) =
∑
m

fm(Q2)
(x0

x

)∆m

(16)

has the CD BFKL–Regge expansion coefficients Ap
m = 1.

There is the fundamental point that the distribution of
small size color dipoles in the photon is enhanced com-
pared to that in the proton [21] which enhances the im-
portance of the rightmost hard BFKL exchange. Indeed,
closer inspection of the expansion coefficients Aγ

m shown in
Table 1 reveals that subleading hard BFKL exchanges are
suppressed with respect to the leading one by the factor
� 1.5, whereas the soft pomeron exchange contribution is
suppressed by the factor � 2.

Our predictions for the photon SF are parameter free
and are presented in Fig. 6. At moderately small x ∼ 0.1
there is a substantial non-vacuum reggeon exchange con-
tribution from DIS off the hadronic (qq̄) component of the
target photon wave function which can be regarded as well
constrained by the large x data. We use here the parame-
terizations presented above ((9), (8) and (12)). The solid
curve shows the result from the complete BFKL–Regge
expansion, the soft pomeron (the dashed curve) and quasi-
valence (the dot-dashed curve) components included; the
dotted curve shows the rightmost hard BFKL (LH) plus
soft pomeron (S) plus non-vacuum (NV) approximation
(LHSNVA). A comparison of the solid and dotted curves
shows clearly that subleading hard BFKL exchanges are
numerically small in the experimentally interesting re-
gion of Q2, and the rightmost hard BFKL pole exhausts
the hard vacuum contribution for 2 � Q2 � 100 GeV2.
The nodal properties of the subleading hard BFKL SFs
are clearly seen: LHSNVA underestimates F2γ slightly at
Q2 � 10GeV2 and overestimates F2γ at Q2 � 50GeV2.
For still another illustration of the same nodal property of
subleading hard components, see Fig. 7 in which we show
the vacuum component of the virtual–real total cross sec-
tion σγ∗γ

tot as a function of Q2 at fixed W . As seen from
Fig. 1, the soft contribution is enhanced towards small Q2,
but this increase is compensated to a large extent by the
small-x enhancement of the rightmost hard BFKL contri-
bution by the large Regge factor (x0/x)

∆IP . For this region
the soft background (the dashed curve) remains marginal
over the whole range of Q2. Because of the node effect, the
m = 1 subleading component changes sign and becomes
quite substantial at very large Q2 and moderately small
x.

Recently the L3 and OPAL Collaborations reported
the first experimental data on the photon SF at suffi-
ciently small x [8,11]. These data are shown in Fig. 6
and are in good agreement with the predictions from the
CD BFKL–Regge expansion. A comparison with the long-
dashed curve which is the sum of the rightmost hard
BFKL and soft exchanges shows that the experimental
data are in the region of x and Q2 still affected by non-
vacuum reggeon (quasi-valence) exchange (dot-dashed
line); going to smaller x and larger Q2 would improve the
sensitivity to pure vacuum exchange greatly.

In order to give a crude idea of finite-energy effects at
large x and not so large values of the Regge parameter
we stretch the theoretical curves a bit to x � x0 multi-
plying the BFKL–Regge expansion result by the purely
phenomenological factor (1−x) motivated by the familiar
behavior of the gluon SF of the photon ∼ (1 − x)n with
the exponent n ∼ 1.

5 The real–real γγ scattering

We recall that because of the well-known BFKL diffusion
in color dipole space, the exchange by perturbative gluons
contributes also to the interaction of large dipoles, r > Rc

[24]. As discussed in [21] this gives rise to a substantial in-
creasing component of hadronic and real photo-absorption
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cross sections and a scenario in which the observed rise of
hadronic and real photon cross sections is entirely due
to this intrusion of hard scattering. This is a motivation
behind our choice for the intercept of ∆soft = 0 for soft
pomeron exchange. Furthermore, in order to make this
picture quantitative one needs to invoke strong absorp-
tion/unitarization to tame too rapid a growth of the large
dipole component of the hard BFKL dipole cross section.
The case of real–real γγ scattering is not an exception and
the above discussed enhancement of small dipole configu-
rations in photons compared to hadrons predicts uniquely
that the hard BFKL exchange component of real–real γγ
scattering will be enhanced compared to proton–proton
and/or pion–proton scattering. This is clearly seen from
Table 1 in which we show the coefficients

σγγ
m = σγ

mσ
γ
mCm (17)

of the expansion for the vacuum exchange component of
the total γγ cross section (m = 0, 1, 2, 3, soft),

σγγ
vac =

∑
m

σγγ
m

(
W 2x0

m2
ρ

)∆m

. (18)

One has to look at the soft–hard hierarchy of σγγ
m and

σγ
m, σ

p
m in the counterparts of (18) for γp and pp scat-

tering. This enhancement of hard BFKL exchange is con-
firmed by simplified vacuum pole plus non-vacuum
reggeon exchange fits to the real–real γγ total cross sec-
tion: the found intercept of the effective vacuum pole εγγ ≈
0.21 is much larger than ε ≈ 0.095 from similar fits to the
hadronic cross section data. In Fig. 8 we compare our pre-
dictions from the CD BFKL–Regge factorization for the
single-vacuum exchange contribution to real–real γγ scat-
tering with the recent experimental data from the OPAL
Collaboration [9] and [13]. The theoretical curves are in
the right ballpark, but the truly quantitative discussion of
the total cross sections of soft processes requires a better
understanding of absorption/unitarization effects.

6 Regge factorization
in γ∗γ∗ and γγ scattering

If the vacuum exchange were an isolated Regge pole, the
well-known Regge factorization would hold for asymptotic
cross sections: [18]

σbb
totσ

aa
tot = σab

totσ
ab
tot. (19)

In the CD BFKL approach such a Regge factorization
holds for each term in the BFKL–Regge expansion for vac-
uum exchange, but evidently the sum of factorized terms
does not satisfy the factorization (19). One can hope for an
approximate factorization only provided one single term
would dominate in the BFKL–Regge expansion. Though
corrections to the exact factorization still exist even for the
single pole exchange because of the light qq̄ and charm cc̄
mass scale difference discussed above.
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One such case is real–real γγ scattering dominated
by soft pomeron exchange (the factorization of the soft
on-shell amplitudes, though never proved, gained strong
support from the high-energy Regge phenomenology). For
this reason the CD BFKL–Regge expansion which repro-
duces well the vacuum exchange components of the pp
and γp scattering cannot fail for the vacuum component
in real–real γγ scattering. The increase of the contribution
of hard-BFKL exchange breaks the Regge factorization re-
lation

Rγγ =
σγγ

vacσ
pp

σγp
vacσ

γp
vac

= 1, (20)

which would be restored at extremely high energies such
that the rightmost hard BFKL exchange dominates. This
property is illustrated in Fig. 9 where we show our evalu-
ation of R for the single-vacuum component of the total
cross sections entering (19). At moderately high energies
naive factorization breaks down, but the expected break-
ing is still weak, � 20%. This curve must not be taken
at face value for W � 0.1–1TeV because of likely strong
absorption effects, but the trend of R being larger than
unity and increasing with energy should withstand uni-
tarity effects.

The second case is highly virtual–virtual γ∗γ∗ scatter-
ing. As we emphasized in Sect. 3, here the CD BFKL ap-
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Fig. 10. The factorization cross section ratio Rγ∗γ∗(x) at fixed
x and QP as a function of Q/P for x = 10−2 (dotted line),
x = 10−3 (long-dashed) and x = 10−4 (dashed)

proach predicts uniquely that because of the nodal prop-
erty of subleading eigen-SFs the superposition of soft and
rightmost hard BFKL poles dominate the vacuum ex-
change in the broad range of Q2, P 2 � 103 GeV2.

The above discussion suggests clearly that different
cross sections must be taken at the same value of x−1 =
W 2/(Q2 + P 2), in which case the vacuum components of
γ∗γ∗ scattering at Q2, P 2 � 4m2

c and x � x0 would sat-
isfy

Rγ∗γ∗(x) =
[σγ∗γ∗

(x,Q2, P 2)]2

σγ∗γ∗(x,Q2, Q2)σγ∗γ∗(x, P 2, P 2)
= 1. (21)

In accordance to the results shown in Fig. 1, the soft ex-
changes break the factorization relation (21). The break-
ing is quite substantial at moderate x = 0.01 (dotted line
in Fig. 10), and breaking effects disappear rapidly, ∼ x∆0 ,
as x→ 0. If the vacuum singularity were the Regge cut as
is the case in the approximation αS = const, then restora-
tion of factorization is much slower; cf. our Fig. 10 and
Fig. 9 in [4].

For the obvious reason that the soft pomeron exchange
is so predominant in real photon scattering, whereas the
soft plus rightmost hard BFKL exchange is outstanding
in virtual–virtual and real–virtual photon–photon scat-
tering, it is ill advised to look at the factorization ratio
Rγ∗γ∗(W ) when one of the photons is quasireal, P 2 ∼ 0.
In this limit one would find strong departures of Rγ∗γ∗(W )
from unity. For precisely the same reason, the predomi-
nance of soft pomeron exchange in pp scattering versus
nearly dominant rightmost hard BFKL pole exchange in
DIS at small x and 5–10 � Q2 � 100GeV2, see [21], the
naive factorization estimate

σγ∗γ∗
(W,Q2, P 2) ≈ σγ∗p(W,Q2)σγ∗p(W,P 2)

σpp(W )
(22)

would not make much sense.
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Table 2. CD BFKL–Regge all-flavor SF parameters

m am cm r2
m, GeV−2 R2

m, GeV−2 z
(1)
m z

(2)
m z

(3)
m δm

0 0.0232 0.3261 1.1204 2.6018 1.
1 0.2788 0.1113 0.8755 3.4648 2.4773 1.0915
2 0.1953 0.0833 1.5682 3.4824 1.7706 12.991 1.2450
3 1.4000 0.04119 3.9567 2.7706 0.23585 0.72853 1.13044 0.5007
soft 0.1077 0.0673 7.0332 6.6447

7 Conclusions

We explored the consequences for the small-x photon SFs
F2γ(x,Q2) and the high-energy two-photon cross sections
σγ∗γ∗

and σγγ of the color dipole BFKL–Regge factoriza-
tion. Because of the nodal properties of eigen-SFs of sub-
leading hard BFKL exchanges, the CD BFKL approach
predicts uniquely that the vacuum exchange is strongly
dominated by the combination of soft plus rightmost hard
BFKL pole exchanges in a very broad range of photon
virtualities Q2, P 2, which includes much of the kinemat-
ical domain attainable at LEP200 and NLC. Starting with
very restrictive perturbative two-gluon exchange as a
boundary condition for BFKL evolution in the color dipole
basis and having fixed the staring point of the BFKL
evolution in the early resulting CD BFKL–Regge phe-
nomenology of the proton SF, we presented parameter-
free predictions for the vacuum exchange contribution to
the photon structure function which agree well with the
OPAL and L3 determinations. A good agreement is found
between our predictions for the energy and photon vir-
tuality dependence of the photon–photon cross section
σγ∗γ∗

(W,Q2, P 2) and the recent data taken by the L3
Collaboration. We commented on the utility of Regge fac-
torization tests of the CD BFKL–Regge expansion.
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Appendix

A CD BFKL all-flavor eigen-SF

In the early discussion of DIS off protons the results of
numerical solutions of the CD BFKL equation for the all-
flavor (u+d+ s+ c) eigen-SF fm(Q2) were parameterized
as

f0(Q2) = a0
R2

0Q
2

1 +R2
0Q

2

[
1 + c0 log(1 + r20Q

2)
]γ0
, (23)

fm(Q2) = amf0(Q2)
1 +R2

0Q
2

1 +R2
mQ

2

m∏
i=1

(
1 − z

z
(i)
m

)
, m ≥ 1,

(24)
where γ0 = 4/(3∆0) and

z =
[
1 + cm log(1 + r2mQ

2)
]γm − 1, γm = γ0δm. (25)

The parameters tuned to reproduce the numerical results
for fm(Q2) at Q2 � 105 GeV2 are listed in Table 2.

The soft component of the proton structure function
as derived from σsoft(r) taken from [33] is parameterized
as follows:

fsoft(Q2) =
asoftR

2
softQ

2

1 +R2
softQ

2

[
1 + csoft log(1 + r2softQ

2)
]
,

(26)
with parameters cited in the Table 2.

The cross section σγ∗γ∗
soft (Q2, P 2) obtained by the con-

tinuation of the above,

σγ∗p
soft =

4π2αem

Q2 fsoft(Q2)

in the Q2, P 2 plane reads

σγ∗γ∗
soft (Q2, P 2) =

σγγ
soft

1 +R2
soft(Q2 + P 2)

(27)

×
[
1 + csoft log

(
1 +

r2softQ
2

1 + r2softP 2 +
r2softP

2

1 + r2softQ2

)]
,

with parameters cited in the Table 2 and the on-shell cross
section is

σγγ
soft =

[
4π2αemasoftR

2
soft

]2 1
σpp

soft
. (28)

B CD BFKL charm eigen-SF

In practical evaluations one needs the charm eigen-SF,
fc

m(Q2). For the rightmost hard BFKL pole it is of the
form

fc
0 (Q

2) = a0
R2

0Q
2

1 +R2
0Q

2

[
1 + c0 log(1 + r20Q

2)
]γ0
, (29)

where γ0 = 4/(3∆0), while for the subleading hard BFKL
poles we have

fc
m(Q2) = amf0(Q2)

1 +K2
mQ

2

1 +R2
mQ

2

mmax∏
i=1

(
1 − z

z
(i)
m

)
, m ≥ 1,

(30)
where mmax = min{m, 2} and

z =
[
1 + cm log(1 + r2mQ

2)
]γm − 1, γm = γ0δm. (31)
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Table 3. CD BFKL–Regge charm structure functions parameters

m am cm r2
m, R2

m, K2
m, z

(1)
m z

(2)
m δm

GeV−2 GeV−2 GeV−2

0 0.02140 0.2619 0.3239 0.2846 1.
1 0.0782 0.03517 0.0793 0.2958 0.2846 0.2499 1.9249
2 0.00438 0.03625 0.0884 0.2896 0.2846 0.0175 3.447 1.7985
3 −0.26313 2.1431 3.7424 · 10−2 8.1639 · 10−2 0.13087 158.52 559.50 0.62563
soft 0.01105 0.3044 0.09145 0.1303

The parameters tuned to reproduce the numerical results
for fc

m(Q2) at Q2 � 105 GeV2 are listed in Table 3.
The soft component of the charm SF is parameterized

as

fc
soft(Q

2) =
asoftR

2
softQ

2

1 +R2
softQ

2

[
1 + csoft log(1 + r2softQ

2)
]
,

(32)
with parameters cited in Table 3.
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